Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
PLoS Pathog ; 20(3): e1012128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547254

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/ß) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1ß (nsp1ß) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1ß as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1ß gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-ß expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.


Assuntos
Coinfecção , Interferon Tipo I , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Citocinas/genética , Citocinas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474030

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Macrófagos Alveolares/metabolismo , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem
3.
Vet Microbiol ; 292: 110066, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555788

RESUMO

Porcine reproductive and respiratory syndrome (PRRS), which has posed substantial threats to the swine industry worldwide, is primarily characterized by interstitial pneumonia. A disintegrin and metalloproteinase 17 (ADAM17) is a multifunctional sheddase involved in various inflammatory diseases. Herein, our study showed that PRRS virus (PRRSV) infection elevated ADAM17 activity, as demonstrated in primary porcine alveolar macrophages (PAMs), an immortalized PAM cell line (IPAM cells), and the lung tissues of PRRSV-infected piglets. We found that PRRSV infection promoted ADAM17 translocation from the endoplasmic reticulum to the Golgi by enhancing its interaction with inactive rhomboid protein 2 (iRhom2), a newly identified ADAM17 regulator, which in turn elevated ADAM17 activity. By screening for PRRSV-encoded structural proteins, viral envelope (E) and nucleocapsid (N) proteins were identified as the predominant ADAM17 activators. E and N proteins bind with both ADAM17 and iRhom2 to form ternary protein complexes, ultimately strengthening their interactions. Additionally, we demonstrated, using an ADAM17-knockout cell line, that ADAM17 augmented the shedding of soluble TNF-α, a pivotal inflammatory mediator. We also discovered that ADAM17-mediated cleavage of porcine TNF-α occurred between Arg-78 and Ser-79. By constructing a precision mutant cell line with Arg-78-Glu/Ser-79-Glu substitution mutations in TNF-α, we further revealed that the ADAM17-mediated production of soluble TNF-α contributed to the induction of inflammatory responses by PRRSV and its E and N proteins. Taken together, our results elucidate the mechanism by which PRRSV infection activates the iRhom2/ADAM17/TNF-α axis to enhance inflammatory responses, providing valuable insights into the elucidation of PRRSV pathogenesis.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pulmão , Macrófagos Alveolares
4.
J Virol ; 98(3): e0168623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376196

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) can lead to severe reproductive problems in sows, pneumonia in weaned piglets, and increased mortality, significantly negatively impacting the economy. Post-translational changes are essential for the host-dependent replication and long-term infection of PRRSV. Uncertainty surrounds the function of the ubiquitin network in PRRSV infection. Here, we screened 10 deubiquitinating enzyme inhibitors and found that the ubiquitin-specific proteinase 1 (USP1) inhibitor ML323 significantly inhibited PRRSV replication in vitro. Importantly, we found that USP1 interacts with nonstructural protein 1ß (Nsp1ß) and deubiquitinates its K48 to increase protein stability, thereby improving PRRSV replication and viral titer. Among them, lysine at position 45 is essential for Nsp1ß protein stability. In addition, deficiency of USP1 significantly reduced viral replication. Moreover, ML323 loses antagonism to PRRSV rSD16-K45R. This study reveals the mechanism by which PRRSV recruits the host factor USP1 to promote viral replication, providing a new target for PRRSV defense.IMPORTANCEDeubiquitinating enzymes are critical factors in regulating host innate immunity. The porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1ß (Nsp1ß) is essential for producing viral subgenomic mRNA and controlling the host immune system. The host inhibits PRRSV proliferation by ubiquitinating Nsp1ß, and conversely, PRRSV recruits the host protein ubiquitin-specific proteinase 1 (USP1) to remove this restriction. Our results demonstrate the binding of USP1 to Nsp1ß, revealing a balance of antagonism between PRRSV and the host. Our research identifies a brand-new PRRSV escape mechanism from the immune response.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Feminino , Endopeptidases/genética , Peptídeo Hidrolases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
5.
Vet Microbiol ; 289: 109957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160508

RESUMO

It is a common sense that porcine reproductive and respiratory syndrome virus (PRRSV) infection could cause immune failure of classical swine fever (CSF) vaccine, and porcine alveolar macrophages (PAMs) are the target cells of both. To elucidate the role of macrophage polarization in PRRSV infection induced CSF vaccine failure, an immortal porcine alveolar macrophage line PAM39 cell line was used to investigate the effect of PRRSV or/and CSFV C-strain (CSFV-C) infection on macrophage polarization in vitro. Interestingly, PRRSV single infection or PRRSV co-infection with CSFV-C promoted PAM39 cells to M1, while CSFV-C single infection induced PAM39 cells to M2. After the construction of M1 and M2 PAM39 cells polarization models, M1 polarized PAM39 cells were found to inhibit the replication of CSFV-C, and Chinese medicine such as matrine, ginsenosides and astragalus polysaccharides could alleviate the polarization of PAM39 cells and the replication of CSFV-C. Furthermore, interferon (IFN)-γ and lipopolysaccharide (LPS) co-stimulation induced NF-κB activation while matrine treatment blocked M1 polarization-induced NF-κB pathway activation. These findings provided a theoretical basis for designing a new strategy to improve the immune effect of CSFV-C based on porcine alveolar macrophage polarization subtypes.


Assuntos
Peste Suína Clássica , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas , Suínos , Animais , NF-kappa B/metabolismo , Matrinas , Peste Suína Clássica/prevenção & controle , Macrófagos Alveolares , Replicação Viral , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Doenças dos Suínos/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446143

RESUMO

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a highly pathogenic porcine virus that brings tremendous economic losses to the global swine industry. PRRSVs have evolved multiple elegant strategies to manipulate the host proteins and circumvent against the antiviral responses to establish infection. Therefore, the identification of virus-host interactions is critical for understanding the pathogenesis of PRRSVs. Tripartite motif protein 28 (TRIM28) is a transcriptional co-repressor involved in the regulation of viral and cellular transcriptional programs; however, its precise role in regulating PRRSV infection remains unknown. In this study, we found that the mRNA and protein levels of TRIM28 were up-regulated in PRRSV-infected porcine alveolar macrophages (PAMs) and MARC-145 cells. Ectopic TRIM28 expression dramatically increased viral yields, whereas the siRNA-mediated knockdown of TRIM28 significantly inhibited PRRSV replication. Furthermore, we used a co-immunoprecipitation (co-IP) assay to demonstrate that TRIM28 interacted with envelope glycoprotein 4 (GP4) among PRRSV viral proteins. Intriguingly, TRIM28 inhibited the degradation of PRRSV GP4 by impeding its ubiquitination. Taken together, our work provides evidence that the host E3-ubiquitin ligase TRIM28 suppresses GP4 ubiquitination and is important for efficient virus replication. Therefore, our study identifies a new host factor, TRIM28, as a potential target in the development of anti-viral drugs against PRRSV.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Ubiquitinas/metabolismo , Replicação Viral/fisiologia , Macrófagos Alveolares/metabolismo
7.
Front Immunol ; 14: 1159970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409113

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Feminino , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Linfócitos T CD8-Positivos , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Leucócitos Mononucleares , Sus scrofa/genética , Transcriptoma
8.
Vet Microbiol ; 281: 109730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068404

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a severe infectious disease currently devasting the global pig industry. PRRS is characterized by intense inflammation and severe damage to the alveolar-capillary barrier. Therefore, it is crucial to uncover the underlying mechanism by which the PRRS virus (PRRSV) induces inflammatory responses and barrier function damage. In addition to porcine alveolar macrophages (PAMs), the primary target cells of PRRSV infection in vivo, pulmonary intravascular macrophages (PIMs) are also susceptible to PRRSV infection. However, the poor isolation efficiency limits the study of PRRSV infection in PIMs. In this study, we optimized the isolation method to obtain PIMs with higher purity and yield and demonstrated that PRRSV's infection kinetics in PIMs were similar to those in PAMs. Notably, PIMs exhibited a more acute inflammation process during PRRSV infection than PAMs, as evidenced by the earlier upregulation and higher levels of pro-inflammatory cytokines, including TNF-α and IL-1ß. More acute endothelial barrier disfunction upon PRRSV infection was also observed in PIMs compared to in PAMs. Mechanistically, PRRSV-induced TNF-α and IL-1ß could cause endothelial barrier disfunction by dysregulating tight junction proteins, including claudin 1 (CLDN1), claudin 8 (CLDN8) and occludin (OCLN). Our findings revealed the crucial and novel roles of PIMs in facilitating the progression of inflammatory responses and endothelial barrier injury and provided new insights into the mechanisms of PRRSV's induction of interstitial pneumonia.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Doenças dos Suínos/metabolismo
9.
PLoS Pathog ; 19(3): e1011295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972295

RESUMO

Calcium (Ca2+), a ubiquitous second messenger, plays a crucial role in many cellular functions. Viruses often hijack Ca2+ signaling to facilitate viral processes such as entry, replication, assembly, and egress. Here, we report that infection by the swine arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV), induces dysregulated Ca2+ homeostasis, subsequently activating calmodulin-dependent protein kinase-II (CaMKII) mediated autophagy, and thus fueling viral replication. Mechanically, PRRSV infection induces endoplasmic reticulum (ER) stress and forms a closed ER-plasma membrane (PM) contacts, resulting the opening of store operated calcium entry (SOCE) channel and causing the ER to take up extracellular Ca2+, which is then released into the cytoplasm by inositol trisphosphate receptor (IP3R) channel. Importantly, pharmacological inhibition of ER stress or CaMKII mediated autophagy blocks PRRSV replication. Notably, we show that PRRSV protein Nsp2 plays a dominant role in the PRRSV induced ER stress and autophagy, interacting with stromal interaction molecule 1 (STIM1) and the 78 kDa glucose-regulated protein 78 (GRP78). The interplay between PRRSV and cellular calcium signaling provides a novel potential approach to develop antivirals and therapeutics for the disease outbreaks.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia , Replicação Viral , Síndrome Respiratória e Reprodutiva Suína/metabolismo
10.
PLoS Pathog ; 18(10): e1010820, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215225

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry worldwide. To investigate the role of miRNAs in the infection and susceptibility of PRRS virus (PRRSV), twenty-four miRNA libraries were constructed and sequenced from PRRSV-infected and mock-infected Porcine alveolar macrophages (PAMs) of Meishan, Landrace, Pietrain and Qingping pigs at 9 hours post infection (hpi), 36 hpi, and 60 hpi. The let-7 family miRNAs were significantly differentially expressed between PRRSV-infected and mock-infected PAMs from 4 pig breeds. The let-7 family miRNAs could significantly inhibit PRRSV-2 replication by directly targeting the 3'UTR of the PRRSV-2 genome and porcine IL6, which plays an important role in PRRSV replication and lung injury. NEAT1 acts as a competing endogenous lncRNA (ceRNA) to upregulate IL6 by attaching let-7 in PAMs. EMSA and ChIP results confirmed that ARID3A could bind to the promoter region of pri-let-7a/let-7f/let-7d gene cluster and inhibit the expression of the let-7 family. Moreover, the NF-κB signaling pathway inhibits the expression of the let-7 family by affecting the nuclear import of ARID3A. The pEGFP-N1-let-7 significantly reduced viral infections and pathological changes in PRRSV-infected piglets. Taken together, NEAT1/ARID3A/let-7/IL6 play significant roles in PRRSV-2 infection and may be promising therapeutic targets for PRRS.


Assuntos
MicroRNAs , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Regiões 3' não Traduzidas , Animais , Proteínas de Ligação a DNA/genética , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Fatores de Transcrição/genética , Replicação Viral
11.
Vet Microbiol ; 273: 109526, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988378

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen. Although tremendous effort has been made for the vaccine development, only modified live vaccines are widely used with arguably limited efficacy. Our previous study showed that the Fc-fused first four Ig-like domains of Sn (Sn4D-Fc) and the SRCR domains 5-9 of CD163 (SRCR59-Fc) can act as PRRSV soluble receptors (VSRs). In this study, we improved the VSR-based anti-PRRSV strategy by taming their Fc domains. Sequence alignment showed that the CH3 domain of pig IgG1 contained five putative amino acids involved in the interaction with the neonatal Fc receptor (FcRn). The M455L/N461S variant of SRCR59-Fc/Sn4D-Fc was created for the higher affinity of FcRn binding. Both rBac-SRCR59-lsFc/Sn4D-lsFc and rBac-SRCR59-Fc/Sn4D-Fc expressing the mutated or wild-type VSRs were generated for conceptual validation. Both immunofluorescence and Western blotting analysis showed that the two rBac vectors could express the encoded VSRs in cells with similar expression levels and anti-PRRSV effects. In the rBac-injected mice, the expression of SRCR59-lsFc/Sn4D-lsFc was significantly prolonged than that of SRCR59-Fc/Sn4D-Fc. Both plasma stability and serum half-life of the purified SRCR59-lsFc/Sn4D-lsFc were significantly improved than that of SRCR59-Fc/Sn4D-Fc. SRCR59-lsFc/Sn4D-lsFc-treated peripheral blood mononuclear cells showed significantly stronger cytotoxicity on PRRSV-infected primary alveolar macrophages than SRCR59-Fc/Sn4D-Fc-treated cells. For the first time, we demonstrated that both half-life and effector function of pig IgG Fc-fused proteins could be significantly improved by taming their CH3 domains. The rBac-SRCR59-lsFc/Sn4D-lsFc could be further developed as a novel anti-PRRSV reagent.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Roedores , Doenças dos Suínos , Animais , Meia-Vida , Leucócitos Mononucleares , Macrófagos Alveolares , Camundongos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Domínios Proteicos , Suínos , Doenças dos Suínos/metabolismo
12.
Int Immunopharmacol ; 111: 109151, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007390

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) is a constant threat to the swine industry worldwide. 2', 5'-oligoadenylate synthetase-like (OASL) protein has antiviral activity, but this has not been demonstrated for PRRSV-2, and the mechanism is not well elucidated. RESULTS: In this study, the expression of OASL1 in porcine alveolar macrophages (PAMs) induced by interferon (IFN)-ß stimulation and PRRSV-2 infection was examined by quantitative real-time polymerase chain reaction and western blotting. Ectopic expression and knockdown of porcine OASL1 (pOASL1) indicated the role of OASL1 in PRRSV-2 replication cycle. Results showed that the expression of OASL1 in PAMs was significantly increased by IFN-ß stimulation or PRRSV-2 infection. OASL1 specific small interfering RNA promoted PRRSV-2 replication, whereas ectopic expression of pOASL1 inhibited PRRSV-2 infection. The mechanism revealed OASL1 interacts with Melanoma differentiation-associated protein 5 (MDA5) to increase IFN responses, and the anti-PRRSV-2 activity was lost after the knockdown of the MDA5 RNA sensor. CONCLUSIONS: OASL1 inhibits PRRSV-2 infection via the activation of MDA5.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Nucleotídeos de Adenina , Animais , Antivirais/farmacologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/metabolismo , Interferons/metabolismo , Ligases/metabolismo , Macrófagos Alveolares/metabolismo , Oligorribonucleotídeos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Transdução de Sinais , Suínos , Replicação Viral
13.
Vet Res ; 53(1): 61, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906635

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen which causes significant economic losses in the global swine industry. Multiple vaccines have been developed to prevent PRRSV infection. However, they provide limited protection. Moreover, no effective therapeutic drugs are yet available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. Here we report that Toosendanin (TSN), a tetracyclic triterpene found in the bark or fruits of Melia toosendan Sieb. et Zucc., strongly suppressed type 2 PRRSV replication in vitro in Marc-145 cells and ex vivo in primary porcine alveolar macrophages (PAMs) at sub-micromolar concentrations. The results of transcriptomics revealed that TSN up-regulated the expression of IFI16 in Marc-145 cells. Furthermore, we found that IFI16 silencing enhanced the replication of PRRSV in Marc-145 cells and that the anti-PRRSV activity of TSN was dampened by IFI16 silencing, suggesting that the inhibition of TSN against PRRSV replication is IFI16-dependent. In addition, we showed that TSN activated caspase-1 and induced maturation of IL-1ß in an IFI16-dependent pathway. To verify the role of IL-1ß in PRRSV infection, we analyzed the effect of exogenous rmIL-1ß on PRRSV replication, and the results showed that exogenous IL-1ß significantly inhibited PRRSV replication in Marc-145 cells and PAMs in a dose-dependent manner. Altogether, our findings indicate that TSN significantly inhibits PRRSV replication at very low concentrations (EC50: 0.16-0.20 µM) and may provide opportunities for developing novel anti-PRRSV agents.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Caspase 1 , Linhagem Celular , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Doenças dos Suínos/metabolismo , Triterpenos , Replicação Viral
14.
Viruses ; 14(6)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746813

RESUMO

The CD69 molecule, as an early activation marker of lymphocytes, is often used to assess the activation of cellular immunity. However, for pigs, an anti-pig CD69 antibody is not yet available for this purpose after infection or vaccination. In this study, a monoclonal antibody (mAb) against pig CD69 was produced by peptide immunization and hybridoma technique. One mAb (5F12) showed good reactivity with pig CD69 that was expressed in transfected-HEK-293T cells and on mitogen-activated porcine peripheral blood mononuclear cells (PBMCs) by indirect immunofluorescence assay and flow cytometry. This mAb did not cross-react with activated lymphocytes from mouse, bovine, and chicken. Epitope mapping showed that the epitope recognized by this mAb was located at amino acid residues 147-161 of pig CD69. By conjugating with fluorochrome, this mAb was used to detect the early activation of lymphocytes in PRRSV- and ASFV-infected pigs by flow cytometry. The results showed that PRRSV infection induced the dominant activation of CD4 T cells in mediastinal lymph nodes and CD8 T cells in the spleen at 14 days post-infection, in terms of CD69 expression. In an experiment on ASFV infection, we found that ASFV infection resulted in the early activation of NK cells, B cells, and distinct T cell subsets with variable magnitude in PBMCs, spleen, and submandibular lymph nodes. Our study revealed an early event of lymphocyte and T cell activation after PRRSV and ASFV infections and provides an important immunological tool for the in-depth analysis of cellular immune response in pigs after infection or vaccination.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Anticorpos Monoclonais/metabolismo , Bovinos , Leucócitos Mononucleares , Ativação Linfocitária , Camundongos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos
15.
Antiviral Res ; 202: 105314, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405171

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a pig disease caused by the PRRS virus (PRRSV) that is characterized with diffuse interstitial pneumonia and lung edema. High expressions of chemokine CXCL10 and its receptor CXCR3 are reported in infected porcine lungs. Since CXCR3 is a key player in host inflammatory response, it might be a therapeutic target to treat lung damage caused by PRRSV infection. The size of pigs has long hampered research into molecular mechanisms of PRRS and validating the potential pharmaceutical targets. In this study, a porcine lung xenograft model with PRRSV infection was generated in immunodeficient mice to evaluate the therapeutic effects of the CXCR3 antagonist AMG487 on PRRSV infection-induced lung injury. The porcine lung tissues developed normally two weeks after xeno-transplantation in the mouse kidney capsule. Infection of PRRSV resulted in its efficient replication in the xenografts and histological damage to the porcine lung tissue structure, with no or little effects on mouse lungs. AMG487 administration dramatically reduced the number of PRRSV genome copies and significantly alleviated the porcine lung injury. Furthermore, treatment of AMG487 in cultured porcine macrophages consistently suppressed PRRSV replication with significant downregulation of Annexin A2 (ANXA2), a cellular protein facilitating viral replication. These findings provide a suitable model for evaluating new antiviral therapies as well as a possible therapeutic option for virus infection-induced lung injury.


Assuntos
Anexina A2 , Lesão Pulmonar , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Acetamidas , Animais , Anexina A2/metabolismo , Xenoenxertos , Pulmão/patologia , Lesão Pulmonar/patologia , Macrófagos Alveolares , Camundongos , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Pirimidinonas , Suínos , Replicação Viral/genética
16.
Theriogenology ; 185: 34-42, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35367779

RESUMO

Reproductive failure caused by porcine reproductive and respiratory syndrome virus (PRRSV) is characterized by embryonic death and weak-born piglets and is associated with placental cell apoptosis and impairment of endometrial integrity. Here, we aimed to determine whether endometrial epithelial barrier function and viability were altered following PRRSV type 1 or type 2 infection. PRRSV inoculation was examined at the apical or basolateral side of porcine glandular endometrial epithelial cell cultures isolated from 4- to 6-month-old PRRSV-free herd gilts (n = 7 pigs). On the apical side, four days postinfection (4 dpi) with type 2 PRRSV, transepithelial electrical resistance decreased by 31% ± 5%, and paracellular permeability to fluorescein isothiocyanate-dextran (4 kDa) increased by 10-fold as compared with the mock and type 1 infection. Real-time polymerase chain reaction results revealed that both PRRSV types upregulated the mRNA expression of the barrier builder tight junction protein (TJ) Cldn5, but downregulated pore-forming TJ Cldn7. Additionally, the expression of other TJ genes, i.e., Cldn3 and Cldn8, was differentially increased by PRRSV type 1 and that of zonula occludens-1 was increased by PRRSV type 2. MTT assays indicated an increase in porcine glandular endometrial epithelial cell culture at 2-6 dpi following type 2 infection. Analysis of apoptosis using Annexin/propidium iodide staining combined with flow cytometry showed that the percentage of viable cells decreased, accompanied by a significantly higher dead cell population following PRRSV type 2 infection at 2-4 dpi. PRRSV type 1 infection also induced dead cells (>4%) at 2 dpi; however, the cell population recovered at 4 dpi. In conclusion, PRRSV type 2 infection caused more severe TJ barrier dysfunction and reduced cell viability compared with PRRSV type 1 infection in the porcine endometrium. Impairment in the membrane integrity of the maternal glandular endometrium may be the underlying mechanism of PRRSV-induced reproductive failure in pregnant sows.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Apoptose , Endométrio/metabolismo , Células Epiteliais , Feminino , Placenta , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Gravidez , Sus scrofa , Suínos , Doenças dos Suínos/metabolismo , Junções Íntimas
17.
Viruses ; 14(3)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35336858

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV), especially the highly pathogenic strains, can cause serious acute lung injury (ALI), characterized by extensive hemorrhage, inflammatory cells and serous fluid infiltration in the lung vascular system. Meanwhile, the pulmonary microvascular endothelial cells (PMVECs) are essential for forming the air-blood barrier and keeping the water-salt balance to prevent leakage of circulating nutrients, solutes, and fluid into the underlying tissues. As well, they tightly regulate the influx of immune cells. To determine the possible relationship between the PMVECs' function changes and lung vascular permeability during PRRSV infection, the PMVECs were co-cultured with HP-PRRSV-inoculated primary pulmonary alveolar macrophages (PAMs) in transwell model, and then the RNA sequencing (RNA-seq) and comprehensive bioinformatics analysis were carried out to characterize the dynamic transcriptome landscapes of PMVECs. In total, 16,489 annotated genes were identified, with 275 upregulated and 270 downregulated differentially expressed genes (DEGs) were characterized at both 18 and 24 h post PRRSV inoculation. The GO terms and KEGG pathways analysis indicated that the immune response, metabolic pathways, cell death, cytokine-cytokine receptor interaction, viral responses, and apoptotic process are significantly regulated upon co-culture with PRRSV-infected PAMs. Moreover, according to the TERR and dextran flux assay results, dysregulation of TJ proteins, including CLDN1, CLDN4, CLDN8, and OCLN, is further confirmed to correlate with the increased permeability of PMVECs. These transcriptome profiles and DEGs will provide valuable clues for further exploring the roles of PMVECs in PRRSV-induced ALI in the future.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Células Endoteliais , Pulmão/patologia , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos
18.
Viruses ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216017

RESUMO

Ubiquitination plays a major role in immune regulation after viral infection. An alternatively spliced porcine E3 ubiquitin ligase RNF122 promoted PRRSV infection and upregulated in PRRSV-infected PAM cells was identified. We characterized the core promoter of RNF122, located between -550 to -470 bp upstream of the transcription start site (TSS), which displayed significant differential transcriptional activities in regulating the transcription and expression of RNF122. The transcription factor HLTF was inhibited by nsp1α and nsp7 of PRRSV, and the transcription factor E2F complex regulated by nsp9. Together, they modulated the transcription and expression of RNF122. RNF122 could mediate K63-linked ubiquitination to raise stability of PRRSV nsp4 protein and thus promote virus replication. Moreover, RNF122 also performed K27-linked and K48-linked ubiquitination of MDA5 to degrade MDA5 and inhibit IFN production, ultimately promoted virus proliferation. In this study, we illustrate a new immune escape mechanism of PRRSV that enhances self-stability and function of viral nsp4, thus, regulating RNF122 expression to antagonize IFNα/ß production. The present study broadens our knowledge of PRRSV-coding protein modulating transcription, expression and modification of host protein to counteract innate immune signaling, and may provide novel insights for the development of antiviral drugs.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Transdução de Sinais , Suínos , Fatores de Transcrição , Ubiquitinação , Proteínas não Estruturais Virais/química
19.
Viruses ; 15(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36680075

RESUMO

The antibody-dependent enhancement (ADE) effect of a PRRSV infection is that the preexisting sub- or non-neutralizing antibodies specific against PRRSV can facilitate the virus entry and replication, and it is likely to be a great obstacle for the selection of immune strategies and the development of high-efficiency PRRSV vaccines. However, the proteomic characterization of primary alveolar macrophages (PAMs) with a PRRSV-ADE infection has not yet been investigated so far. Therefore, we performed a tandem mass tag (TMT)-based quantitative proteomic analysis of PAMs with a PRRSV-ADE infection in this study. The results showed that a total of 3935 differentially expressed proteins (DEPs) were identified in the PAMs infected with PRRSV-ADE, including 2004 up-regulated proteins and 1931 down-regulated proteins. Further, the bioinformatics analysis for these DEPs revealed that a PRRSV-ADE infection might disturb the functions of ribosome, proteasome and mitochondria. Interestingly, we also found that the expression of the key molecules in the innate immune pathways and antiviral proteins were significantly down-regulated during a PRRSV-ADE infection. This study was the first attempt to analyze the proteomic characterization of PAMs with a PRRSV-ADE infection in vitro. Additionally, the findings will provide valuable information for a better understanding of the mechanism of virus-antibody-host interactions during a PRRSV-ADE infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Macrófagos Alveolares , Anticorpos Facilitadores , Proteômica/métodos , Síndrome Respiratória e Reprodutiva Suína/metabolismo
20.
J Virol ; 96(3): e0186321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851144

RESUMO

Type I interferons (IFN-Is) play a key role in host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating IFN-I production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-ß) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that a deficiency of HOXA3 promoted the HO-1-IRF3 interaction and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, causes significant worldwide economic losses in the pork industry. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found that a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 and provides new insights into the PRRSV immune evasion mechanism.


Assuntos
Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Proteínas de Homeodomínio/genética , Interferon Tipo I/metabolismo , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Sítios de Ligação , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Patógeno/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Transporte Proteico , Suínos , Fatores de Transcrição/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...